MORE THAN A SHORTCUT: A HYPERBOLIC APPROACH TO EARLY-EXIT NETWORKS

APPENDIX

A. INHERENT HIERARCHY IN PRE-TRAINED
BACKBONES

Our proposed method, Hyperbolic Early-Exit networks (HypEE), re-
frames the multi-stage architecture by leveraging hyperbolic geom-
etry to explicitly model the hierarchical relationships between inter-
mediate network layers. Instead of treating early exits as a series
of independent classifiers, we consider them a sequence of refine-
ment stages operating within a geometrically structured latent space.
Below, we first provide an empirical motivation for this geometric
shift.

A.1. Revealing Hierarchy within Intermediate Representations

The premise of our work is that the representations learned by
deep backbone networks are inherently hierarchical across their
depth. We analyze the geometric structure of intermediate embed-
dings from a pre-trained BEATs [1] audio backbone. We adopt
the concept of Gromov’s d-hyperbolicity [2], a formal measure
that quantifies the “tree-likeness” of a metric space. A low, scale-
invariant §-hyperbolicity value, denoted 6,; € [0, 1] B indicates
that the space is highly tree-like and thus well-suited for embedding
in a hyperbolic geometry [3]].

We conduct an experiment where we extract embeddings from
the backbone at different depths: 25% through the network, 50%
through, and at the final layer (100%). We then compute d,.; both
within the set of embeddings from a single layer (i.e. intra-layer)
and between the sets of embeddings from different layers (i.e. inter-
layer). The results, summarized in Table[T] reveal two key findings.
First, the intra-layer embeddings at each depth exhibit low d,..; val-
ues (0.23-0.30), confirming that the representations for different au-
dio samples are already organized in a hierarchical fashion. More
importantly, the inter-layer hyperbolicity is even more pronounced,
with §,¢; values as low as 0.143 between the 50% and 100% layers.

This strong empirical evidence suggests that a natural hierarchi-
cal structure exists not just among audio samples (inline with [3]]’s
observation for image samples), but critically, across the depth of
the audio backbone itself. The representations at deeper layers are
structurally related to those at shallower layers in a tree-like manner.
This finding motivates our core proposal: to replace the geometri-
cally unstructured Euclidean space of traditional Early-Exit models
with a hyperbolic latent space, which provides a natural inductive
bias for learning and preserving these hierarchical relationships.
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Diameter: maximal pairwise distance. Any latent space is considered d-
hyperbolic if, for some value §, every point located on the edge of a geodesic
triangle is within a distance of § from another edge.

Table 1. Gromov’s J-hyperbolicity for intermediate embeddings
from a pre-trained BEATs backbone. We compare both intra-layer
(top) and inter-layer (bottom) configurations. The significantly lower
drer values for inter-layer comparisons indicate a strong hierarchical
structure across the network’s depth and strongly motivate the use
of hyperbolic geometry to model the network’s depth-wise progres-
sion.

X | Y | 6 | c

25% 25% | 0.282 | 0.26
50% 50% | 0.304 | 0.223
100% | 100% | 0.233 | 0.379
25% 50% | 0.247 | 0.338
25% 100% | 0.148 | 0.94
50% 100% | 0.143 | 1.012

Table 2. Detailed Early-Exit Analysis for Global Norm Exit and
Classwise Norm Exit Strategies

Exit Strategy | Gate | Triggered % | Correct % | Incorrect %
EE, 35.61 80.52 19.48
Global Norm Exit EE; 36.74 78.13 21.87
Final 27.65 60.18 39.82
EE, 30.05 98.82 1.18
Classwise Norm Exit | EE; 39.08 99.73 0.27
Final 30.87 61.81 38.19

B. DETAILED EARLY-EXIT TRIGGER ANALYSIS FOR
HypEE

We further detail our breakdown of proposed EE triggers in Table
[l It is evident that a geometric trigger is exceptionally precise
at identifying samples it can classify correctly: of the samples ex-
ited at FEo and EFE1, over 98.8% and 99.7% are classified cor-
rectly, respectively. The model intelligently offloads the truly diffi-
cult samples (approx. 31% of the total) to the final, most capable
exit. This demonstrates that our geometry-aware triggering mecha-
nism successfully operationalizes the learned hierarchy, completing
the HypEE framework and delivering a superior accuracy-efficiency
trade-off.

C. ADDITIONAL VISUALIZATION FOR HYPERBOLIC
LATENTS

C.1. UMAP Visualization of Exit Gate Embeddings

In addition to the t-SNE plots in the main paper, we use UMAP
(Uniform Manifold Approximation and Projection) to visualize the
learned embeddings, as shown in Fig. [I] The embeddings from the
three exit gates are projected from the Lorentz hyperboloid onto its
equivalent Poincaré disk representation. The visualization, colored
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Fig. 1. UMAP [4] visualization of the learned hyperbolic embed-
dings from the SED model, projected onto the Poincaré disk. The
embeddings are colored by their exit level (K Eo, FE1, Final). The
plot shows a clear radial hierarchy, with earlier exit embeddings po-
sitioned more centrally, providing evidence of the learned entailment
structure.

by exit level, provides further evidence of the hierarchical structure
imposed by our entailment loss. The embeddings from the first exit,
EFEq (purple), are predominantly located in the central region of the
disk, representing higher uncertainty. The embeddings from the sec-
ond exit, /' F; (teal), extend outwards from this core, and the Final
exit embeddings ( ) are pushed furthest towards the periphery.
This clear radial separation confirms that the model learns a struc-
tured progression from general to specific representations across its
depth.

C.2. Contextual Clustering with Hyperbolic k-means

To investigate the semantic organization of the learned space at the
Early-Exits, we perform an unsupervised clustering experiment. Our
hypothesis is that the Early-Exits learn to group sounds into broader,
contextually relevant acoustic categories, even without explicit su-
pervision to do so.

Specifically, we select five distinct, high-level acoustic con-
cepts from the Audioset Strong evaluation set: Respiratory, Ringing,
Speech, Singing, and Mechanical (engines), each comprising sev-
eral fine-grained classes. We gather evaluation samples belonging to
these classes and apply hyperbolic k-means clustering (k=5) to their
embeddings from FE( and FE separately.

Fig. [2] shows the proportion of each fine-grained class within
the emergent clusters found by k-means. The results reveal a re-
markable correspondence between the unsupervised clusters and our
predefined semantic groups. For example, at £ Eq, Cluster O is over-
whelmingly composed of various speech and singing classes (human
vocalizations), while Cluster 3 is almost exclusively made up of dif-
ferent types of bell and chime sounds (high-frequency alerts/musical

sounds). Similarly, a significant portion of engine-related sounds is
grouped into Cluster 2.

Implication for Contextual AI. This emergent clustering demon-
strates that the Early-Exits in HypEE learn a meaningful acoustic
taxonomy. E Fq can effectively distinguish between high-level con-
cepts like “human vocalizations” or “mechanical noise” even if it
remains uncertain about the specific subclass. This capability is
highly valuable for contextual Al on resource-constrained devices.
An “always-on” system could use a computationally cheap Early-
Exit to make a broad contextual inference (e.g., “human presence
detected,” “vehicle nearby”) and only trigger the more expensive,
deeper layers when a fine-grained classification is required, enabling
a more intelligent and efficient allocation of resources [J5].

D. LOOKAHEAD PREDICTION VIA ENTAILMENT
CONES

In Algorithm 1 (main paper), we demonstrated a triggering mech-
anism based on the norm of hyperbolic embeddings, which serves
as a proxy for uncertainty. Beyond this, we explore whether the
entailment cone itself—the core of our hierarchical training objec-
tive—could be directly harnessed for inference. Inspired by work
on predicting uncertain futures [6]], where hyperbolic models “hedge
their bets” by forecasting a more abstract outcome, we investigate if
an embedding at an Early-Exit, h;, could “forecast” its final classifi-
cation by examining the classes of more refined embeddings that are
geometrically consistent with it.

Specifically, we define “geometric consistency” as falling within

the entailment cone. We designed an experiment where each sam-
ple from the ESC-50 validation set acts as a “query” represented by
its embedding at the first exit, FFo. A “reference set” consists of
all training set embeddings from the subsequent, more refined exits
(EE, and Final). For each query, we identify all reference em-
beddings that fall within its entailment cone, a process conceptually
illustrated in Fig. 3] Since the entailment loss is non-zero during our
training, we relax the strict condition with a threshold 7', such that a
reference sample h... s is considered to be within the cone of a query
hque'ry if emt(hquery, href) S T- aper(hquery).
Results and Future Directions. Fig. ff]shows that at tight thresholds
(e.g., T' = 1.2), the precision is remarkably high: 93.2% of the
reference samples retrieved from E'E share the same ground-truth
class as the query sample. This indicates that the entailment cone
is semantically coherent and contains strong predictive information
about the query’s identity. As the threshold is relaxed, the number of
retrieved samples increases, but precision naturally decreases.

While promising, we present this as an exploratory analysis
rather than a practical inference algorithm due to two main chal-
lenges. First, the computational cost of comparing a query against
a large reference set is prohibitive for real-time applications. Sec-
ond, many query samples do not retrieve any reference samples at
stricter thresholds, limiting the coverage of the method. However,
this exploration successfully validates the rich, predictive structure
of the HypEE latent space and opens several exciting avenues for
future work. A key direction would be to develop methods to make
this look ahead approach practical, perhaps by learning a small,
representative set of prototype reference embeddings to reduce the
search space, or by training a model to directly predict the class dis-
tribution within an embedding’s entailment cone. Our initial result
strongly suggests that the geometry learned by HypEE is not just
a representational artifact, but a potentially powerful tool for future
inference strategies.
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Fig. 2. Proportion of hand-picked Audioset Strong classes within each of the 5 clusters discovered by hyperbolic k-means, for embeddings
from E'Eq (left) and EE; (right). The unsupervised clusters show a strong correspondence with high-level acoustic concepts (e.g., human
speech, bells, engines), indicating that the Early-Exits learn a meaningful contextual hierarchy.
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Fig. 3. A conceptual illustration of the look ahead prediction strat-
egy. A query sample’s embedding at an Early-Exit, EF;, defines
an entailment cone. We look ahead by identifying reference embed-
dings from the training set of subsequent exits (e.g., EF;+1, Final)
that fall within this cone. The ground-truth classes of these retrieved
reference samples are then used to forecast the query’s most likely
class.

E. QUALITATIVE ANALYSIS OF THE LEARNED
HIERARCHY VIA TRAVERSAL

To qualitatively evaluate the hierarchical structure learned by Hy-
pEE, we conduct a traversal experiment inspired by recent work in
hyperbolic representation learning [[7}[8]]. The objective is to analyze
the path from a specific, fine-grained embedding (from the final exit)
to the most general concept in the latent space (the ‘(ROOT]‘). A
well-structured hierarchy should reveal a smooth progression from
specific to abstract concepts along this path.
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Fig. 4. Results of the look ahead prediction experiment. For differ-
ent entailment cone thresholds (7°), we show the number of retrieved
reference samples from later exits that either match (green) or do
not match (red) the query sample’s ground-truth class. The percent-
ages indicate the precision (match / total retrieved). The left and
right plots correspond to using reference samples from £ E'; and the
Final exit, respectively.

Beyond providing qualitative validation, these findings point to-
wards several practical applications for the structured latent space
learned by HypEE. The navigable hierarchy offers a powerful tool
for model interpretability and error analysis, allowing researchers
to trace the refinement process for a given input. Furthermore, the
emergent acoustic taxonomy at the earliest exit could enable more
sophisticated, context-aware triggering mechanisms. For instance,
an “always-on” device could use the computationally cheap E'Ey to
make broad contextual inferences (e.g., detecting a “transient event”)
and only activate the deeper, more power-intensive exits when a fine-
grained classification is necessary. This opens avenues for designing
more efficient and intelligent sensing systems that leverage a deeper
understanding of their acoustic environment.
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